Feed aggregator

Jeremiah Young, Eric Pennington and 3 other people like your link: "We don't think it's creepy at all!..".

Facebook - Thu, 08/06/2015 - 15:42
Jeremiah Young, Eric Pennington and 3 other people like your link: "We don't think it's creepy at all!..".

Drones Are Becoming the Oil Industry's Guardian Angels

Robotics VO - Tue, 08/04/2015 - 11:44

As petroleum has become harder to find, it's become increasingly costly and dangerous to extract. Could aerial data-collection bots create a new boom in fossil fuels?
Oil and gas exploration has always moved at the speed of the equipment—glacially. Productive job sites quickly get clogged with fleets of massive trucks, cranes, and rotary diggers, forcing site planners to observe the area by helicopter just to direct traffic.
For decades, this has been the only way to do business. And it’s pricey. Drilling machinery burns thousands of dollars per day in operation, and nearly as much when it sits idle. When conditions change—weather, markets, breakdowns—teams suffer a chain reaction of runaway costs only the biggest conglomerates can afford.
With such massive overhead acting as a barrier to entry, oil and gas companies have been slow to innovate around worker safety and environmental impact. But aerial drones threaten to drastically change the pace. Are American oil companies ready?
Self-piloting drones like the Boomerang are leading a small but fundamental change in the industry. In oil and gas, equipment doesn’t move without data—where to drill, how deep to go, and so on. With the traffic bottleneck removed, suddenly equipment can move more nimbly and exploration startups can get in the drilling game for a fraction of the traditional entry cost.
The impact of self-piloted drones comes in the form of speed and savings. By photographing job sites 24 hours a day in high definition, oil and gas principals get an up-to-the-minute view of how their resources are deployed—even when conditions are too dangerous for manned aviation. Instead of planning fleet movements weeks in advance, decisions about fleet movement are possible on the fly, cutting costs and making management more responsive. Though oil and gas are becoming increasingly hard extract in the U.S., dynamic job site monitoring is one of a handful of technologies that could keep domestic exploration competitive with overseas oil.
The Boomerang self-piloting drone works like consumer drones, but with one key feature: it requires zero maintenance. After surveying several square miles of terrain, the three-foot-wide quadcopter can pilot itself back to a docking station where it self-installs a fresh battery pack. Other industrial drones like the Spektre can even make 3D maps of dangerous sites, forgoing the need for human workers to analyze the data once the drone is done surveying.
When combined with other technologies like additive manufacturing and advanced seismography, drones-as-a-platform can become a fulcrum point for much larger industry disruptions. Should a drone report broken machinery, its stereoscopic vision could dispatch an order for a 3D-printed replacement part right on site.
Fitted with advanced seismic sensors, drones could even replace exploration teams entirely, recording subterranean data at high sensitivity from hundreds of feet in the air. These capabilities entail a big shake-up for one of the world’s most entrenched industries—with less strip mining, fewer accidents, and cheaper fuel for the rest of us.
Full story in HP Matter.
 

Facebook Built a Giant Internet Drone

Robotics VO - Fri, 07/31/2015 - 12:59

Facebook just built a gigantic solar-powered drone that will stay in the stratosphere for months at a time, beaming broadband Internet to rural and hard-to-reach areas.
The drone, called Aquila, is the baby of Facebook's (FB, Tech30) year-old Connectivity Lab. The lab has been developing new technology as part of the social network's mission to "connect everybody in the world."
Four billion people don't have access to the Internet, and 10% of the world's population lacks the necessary infrastructure to get online. To reach these people, Facebook is working on drones, satellites, lasers and terrestrial Internet technology.
On Thursday, Facebook announced it had finished construction on its first full-sized drone and announced other project milestones. The team's researchers say they've found a way to use lasers to deliver data speeds from the drones ten times faster than the industry standard.
Facebook has been working on the Aquila for a year, building off of technology it acquired when it bought UK drone company Ascenta in 2014. The solar-powered unmanned aircraft is designed to fly far above commercial airspace and weather, and to stay in the air for three months at a time. It could give Internet access to people located in a 50-mile radius on the ground.
"It's sort of like a backbone of Internet using lasers in the sky, that's the dream we have," said Yael Maguire, the engineering director of Facebook's Connectivity Lab.
Aquila hasn't taken flight yet, but the UK-based team has done flight testing on a number of scale models. Over the next six months, the group will run structural and other tests and eventually take it for its first test flight.
The technology is years away from being used in the field -- Facebook doesn't yet have an exact timeline.
The Aquila drone looks like a giant v-shaped boomerang. It's 140-feet in diameter -- about the same wingspan as a Boeing 737 -- and covered in solar cells. It is made of light carbon fiber that is two to three times stronger than steel when cured. It will weigh around 880 pounds when fully outfitted with motors, batteries and communications equipment.
It won't require a runway. The Aquila will be launched by tethering it to a helium balloon and floating it straight past the weather and commercial airspace. During the day, it will cruise in circles at 90,000 feet, soaking up solar power. At night, it will save energy by drifting down to 60,000 feet. Though current regulations require one pilot on the ground for each drone, Facebook hopes to design the Aquila so it can fly without a dedicated pilot.
To get the Internet, a laser system will connect the ground and the drone. A Facebook team has been working on the laser technology in California, and says it has achieved speeds of tens of gigabytes per second -- that's fast enough to allow hundreds of thousands of people to access broadband Internet simultaneously.
 The lab works with Facebook's Internet.org, which has been criticized for only giving people access to a limited number of Internet services. But Aquila is designed to provide full broadband Internet. Facebook also won't operate the planes itself. Instead, the company plans to work with local providers or governments to actually deploy the technology, though details are still unknown.
"Building big planes and selling them is not core to our mission of connecting people," said Jay Parikh, a VP of engineering. "We are not going to take this stuff and be 'Facebook ISP.'"
Full story in CNN Money.

 

Stewart Tansley likes your post.

Facebook - Thu, 07/30/2015 - 11:51
Stewart Tansley likes your post.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

김홍종 likes your photo.

Facebook - Wed, 07/29/2015 - 04:29
김홍종 likes your photo.

Pages

Subscribe to Institute for Robotics & Intelligent Machines at Georgia Tech aggregator